上一页

ⓘ 科学




                                               

琐罗亚斯德教

瑣羅亞斯德教 (波斯文: زرتشتی‌گری ‎, 英文Zoroastrianism),伊斯兰教诞生之前中东和西亚最具影响力的宗教,古代波斯帝国的国教。因信徒在火前祷告而又得名为 拜火教 (俗稱),在中文称为「 祆教 」、「 火祆教 」或「 白頭教 」。 琐罗亚斯德教的思想屬西方理論定義下的二元論,有學者認為它對犹太教以及后来的基督教和伊斯兰教影响深远。琐罗亚斯德教的神" 密特拉”也进入到罗马帝国以及印度的佛教等宗教之中,现今西方圣诞节即为密特拉节。目前此教在伊朗偏僻山区和印度孟买一带的帕西人(又譯作巴斯人)中仍有很大的影响力。 此教的创始人是琐罗亚斯德,出身于米底王国的一个贵族骑士家庭,20岁时弃家隐居,30岁时聲稱受到神的启示, ...

                                               

动物学

动物学 作为生物学的一大分支,研究范围涉及动物的形态、生理构造、生活习性、发展及进化史、遗传及行为特征、分布、以及与环境间相互关系。您也可以通过以下链接找到动物的分类。專門研究動物學的學者,稱為 動物學家 。

                                               

兽医学

獸醫學 (英語: veterinary medicine 或 veterinary science )是一門應用醫學診斷與治療方法來處理動物問題的學門,面對的動物包括寵物、野生動物或家畜與家禽等。獸醫學除了研究一般醫學問題之外,也關注於動物的行為。受過獸醫學訓練並以此來診療動物的醫生稱為獸醫或獸醫師。 兽医学是一门古老的学科。由于一些先进的诊断和治疗技术的出现,兽医学在近年来得到了很大的发展。现在的动物已经可以使用一些先进的方法进行治疗,如注射胰岛素、根管治疗术、髋关节置换术、白内障手术、人工心脏起搏器等牙科或外科的治疗。

                                               

數秘術

數秘術 ,是指物象化成數字的占卜,如姓名学是用筆畫數。 早期數學家對數秘術研究有所參與,例如畢達哥拉斯認為數學可以解釋世上一切事物。他認為一切真理可以用比率、平方及直角三角形去反映、證實。聖奧古斯丁則寫說,「數字是神提供給人用來確認真理的宇宙語言」。 但現代的數學已不再將其視為數學的一部分,而視作數秘學。數秘術與數學這種在歷史演進上的關係變化,類似於占星學之於天文學,或是煉金術之於化學。

                                               

科学史

科學史 ,利用了思想史和社會史兩個面向的歷史研究方法。科學起源於對自然其功能性的實用考量以及纯粹的哲學探究。 雖然科學方法自古便不斷發展,但現代科學方法卻是始自伊斯蘭科學家,海什木在大約西元1000年左右,運用實驗的經驗法則寫出了一本關於光學的著作光學書。然而,現代科學方法在13世紀的歐洲由大學經院哲學的學者所發起科學革命時,方才算發展完全,到了16世紀及17世紀早期的發展高峰,現代科學方法的廣泛應用更引領了知識的全面重估。科學方法的發展被某些人(尤其是科學哲學家及實證科學家)認為是太過於基礎而重要的,認為早先對於自然的探索只不過是 前科學 (pre-scientific),現代科學方法才被他們認為是真正的科學。習慣 ...

                                               

古生物学

古生物学 是研究古地质时代中的生物及其发展的科学。它是生物學和地質學的交叉科学。既是生命科学中唯一具有历史科学性质的时间尺度的一个独特分支,研究生命起源、发展历史、生物宏观进化模型、节奏与作用机制等历史生物学的重要基础和组成部分;又是地球科学的一个分支,研究保存在地层中的生物遗体、遗迹、化石,用以确定地层的顺序、时代,了解地壳发展的历史,推断地质史上水陆分布、气候变迁和沉积矿产形成与分布的规律。

                                               

科學界

科学共同体 (英语: Scientific community ,香港多作 科学界 ,台湾多作 科学社群 ),包括了所有的科学家以及他们之间的互动和合作。一般会按不同工作的领域分成子社群,如在计算机科学之下的机器人学界,但不同的子社群之间也有着密切的交流。科學家通过科学方法希望其达到客观性,而同行评审则是借助在杂志和会议上的讨论,通过保持研究的质量和结论的可读性来达到这一客观能力。

                                               

科学家

科学家 是一个泛称,广义上指使用系统化的活动来发现新知识的人。狭义的定义指使用科学方法做研究,并且在一定的领域取得重要影响或者贡献的科研工作者。 科学家一般是某个,或者多个科学领域里的专家。

                                               

科学哲学

科学哲学 是20世纪兴起的一个哲学分支,关注科学的基础、方法和含义,主要研究科学的本性、科学理论的结构、科学解释、科学检验、科学观察与理论的关系、科学理论的选择等。该学科的中心问题是:什么有资格作为科学,科学理论的可靠性,和科学的终极目的。此学科有时与形而上学、本体论和认识论重叠,例如当它探索科学与真理之间的关系时。 有许多关于科学哲学的核心问题,包括科学能否揭示不可观察之事物的真相,甚至科学推理是否可以被证明为合理的,哲学家们没有达成共识。除了这些关于科学作为一个整体的一般性问题,科学哲学家也思考适用于特定学科例如生物学和物理学的问题。一些科学哲学家还使用当代的科学结果来达到哲学本身的结论。 ...

                                               

社会科学

社会科学 是用科学的方法,研究人类社会的種種现象。如社會學研究人類社會(主要是當代),政治學研究政治、政策和有關的活動,經濟學研究資源分配。广义的" 社会科学”,是人文学科和社会科学的统称。社會科學起源於西元1930年出版的(Encyclopaedia of the Social Sciences),其內容包含了心理學、語言學、犯罪學、教育學、生物學、醫學、倫理學、藝術、法律學、政治學、經濟學、社會學、社會工作、人類學及地理學、管理學等與社會科學概論相關的一門學科。

                                               

自然科学

自然科学 是研究大自然中有机或无机的事物和现象的科学。自然科学包括天文學、物理学、化学、地球科学、生物学等等。

                                               

工程物理學

工程物理學 或工程科學指的是結合物理學、數學以及各類工程學科(電腦工程、電子工程、材料工程或機械工程)的綜合學科。藉由立足於嚴謹的科學方法上,該學門鑽研如何尋找和發展工程問題上的新方法。在許多國家,工程物理學學位被視為是學術學位所獎勵。它可以被當成大學等級的學程,但也時常因其廣泛的學科範圍和嚴謹的修業課程而被規劃為榮譽學位。

                                               

科学期刊

科学期刊 ( scientific journal )是一种发表经过同行评审的科学研究相关论文的周期性刊物。科学期刊是科学研究者获取了解同行工作的重要渠道。著名的科学期刊往往具有重要的影响力,往往能影响科学研究的方向和科研资金的投入。在中国,科学期刊的发表对科研人员的考核具有重要作用 科学期刊的历史可以追溯到1665年,当时法国的期刊Journal des sçavans和英国的期刊自然科学会报第一次开始系统发行科学研究结果。 科学期刊的评估一般采用影响因子。

                                               

诺贝尔和平奖

諾貝爾和平獎 (挪威語: Nobels fredspris ),是由瑞典發明家阿爾弗雷德 諾貝爾於1895年所創立的諾貝爾獎中之一,由挪威諾貝爾委員會選出得主,每年12月10日(諾貝爾逝世紀念日)頒發。與其他在瑞典斯德哥爾摩頒發四個獎項不同,諾貝爾和平獎頒獎典禮是在挪威首都奥斯陸舉行,由挪威諾貝爾委員會主席頒獎,挪威國王監禮(皇后、王子、公主一般都会出席)。挪威諾貝爾委員會則是由五位評審委員組成,成員由挪威議會任命。 根据诺贝尔的遗嘱,和平奖的宗旨是表彰「為促進民族國家團結友好、取消或裁減軍備以及為 和平會議 的組織和宣傳盡到最大努力或作出最大貢獻的人」。不过该奖项也可以授予符合获奖条件的机构与组织。第一屆諾貝爾和平獎 ...

                                               

菲尔兹奖

費尔兹奖 (英語: Fields Medal ),正式名称为 国际杰出数学发现奖 (英語: International Medals for Outstanding Discoveries in Mathematics ),是一個在国际数学联盟的國際數學家大會上頒發的獎項。每四年评选2-4名有卓越贡献且年龄不超过40岁的数学家。得奖者须在该年元旦前未满四十岁。 奖项以加拿大數學家约翰 查尔斯 菲尔兹的名字命名。菲爾兹筹备设立该奖,并在遗嘱中捐出47.000元给奖项基金。 費尔兹奖被认为是年轻数学家的最高荣誉,和阿贝尔奖均被称为為数学界的諾貝爾獎。奖金有15.000加拿大元,约合13.767美元。而阿贝尔奖的奖金有600万瑞典克朗,约合100万美元,更接近诺贝尔奖。

                                               

奈望林纳奖

内万林纳獎 (Nevanlinna Prize)是頒予在電腦科學的數學方面有主要貢獻者。獎項於1981年由國際數學家大會執行委員會設立,以紀念在前一年過世的芬蘭數學家罗尔夫 内万林纳(Rolf Nevanlinna)。獎項為一面金牌和現金獎,每四年在國際數學家大會頒發。得獎者必須在獲獎那一年不大於40歲 。

                                               

高斯獎

卡尔 弗里德里希 高斯數學應用獎 ( Carl Friedrich Gauss Prize )是在國際數學家大會上,與菲爾茲獎和奈望林納獎一同頒發的獎項,表揚研究工作在數學外領域影響深遠的數學家。與另外兩個獎項不同,高斯獎不設年齡限制,因為研究工作的影響可能要很多年後才表現出來。這獎項以卡尔 弗里德里希 高斯命名,紀念他的研究在科學、工程和統計學的廣泛應用。獎項包括獎章和獎金。2006年的獎金金額為10.000欧元。獎金資助來自1998年德國柏林國際數學家大會的盈餘。 獎章正面為高斯的肖像,背面為一條曲線穿過圓形和正方形,代表高斯以最小二乘法算出穀神星的軌道。 第一屆高斯獎在2006年8月22日於西班牙馬德里國際數學家大會頒發,授予日本數學家伊 ...

                                               

陈省身奖章

陈省身奖章 (英語: Chern Medal ,或 Chern Medal Award ),是国际数学界设立的首个以华人名字命名的数学大奖。该奖奖励有杰出终生贡献的数学家,奖励数学研究的最高水平。陈省身奖章在国际数学家大会上颁发。

                                               

克拉福德奖

克拉福德奖 (英語: Crafoord Prize )在1980年由人工肾脏发明者、瑞典人 霍尔格 克拉福德 和他的妻子安娜-格蕾塔 克拉福德设立,瑞典皇家科学院管理。设立目的是对诺贝尔奖遗漏科学领域的基础研究予以提倡和奖励。这些领域有四个类别:天文学,数学,地球科学,和生物科学,其中特别是强调关于生态学,还有 多发性关节炎 ,这疾病使霍尔格在生命最后几年时受尽煎熬。根据科学院," 这些学科被选择,是补充那些被授予的诺贝尔奖”。 每年只颁发一个奖项,以旋转机制 - 天文学和数学;然后地球科学;然后生物科学。对于克拉福德多发性关节炎奖,只有当一个特别委员会认定在多发性关节炎领域取得了实质性进展时才会颁发。克拉福德奖的得獎者在 ...

                                               

邵逸夫獎

邵逸夫獎 (英語: The Shaw Prize )由香港已故著名的影視製作人邵逸夫爵士於2002年11月15日創立,以表彰在科學學術研究上取得「對人類生活产生深遠影響」的成果的科學家。邵逸夫獎是一個重要的全球性的科學獎項,很多人稱之為「東方諾貝爾獎」。

                                               

图灵奖

图灵奖 (英語: ACM A.M. Turing Award ),又譯 杜林獎 、 A.M.图灵奖 ,是计算机协会(ACM)于1966年设立的獎項,专门奖励对计算机事业作出重要贡献的个人。其名称取自世界计算机科学的先驱、英国科学家、曼徹斯特大学教授艾伦 图灵( A.M. Turing ),这个奖设立目的之一是纪念这位現代计算机科學的奠基者。获奖者必须是在计算机领域具有持久而重大的先进性的技术贡献。大多数获奖者是计算机科学家。是计算机界最负盛名的奖项,有" 计算机界诺贝尔奖”之称。 图灵奖对获奖者的要求极高,评奖程序也极严,一般每年只奖励一名计算机科学家,只有极少数年度有两名以上在同一方向上做出贡献的科学家同时获奖。2014年11月13日之前图灵奖由英特 ...

                                               

罗蒙诺索夫金质奖章

罗蒙诺索夫金质奖章 (俄語: Большая золотая медаль имени М. В. Ломоносова )以俄罗斯科学家和博学家米哈伊尔 罗蒙诺索夫的名字命名,自1959年起由苏联科学院和后来的俄罗斯科学院(RAS)颁发,奖励在自然科学和人文科学取得杰出成就的人物。 自1967年以来,罗蒙诺索夫金质奖章每年颁发两枚,授予一位俄罗斯科学家和一位外国科学家。它是俄罗斯科学院的最高荣誉。

科学
                                     

ⓘ 科学

科学 (词源为拉丁文" scientia”,意为" 知识”)是一种系统性的知識體系,它积累和组织並可檢驗有关于宇宙的解释和预测。科学强调预测结果的具体性和可证伪性,这有别于空泛的哲学。科学也不等同于寻求绝对无误的真理,而是在现有基础上,摸索式地不断接近真理。故科学的发展史就是一部人类对宇宙的认识偏差的纠正史。

科学的源头最早可追溯到约公元前3500年至前3000年的古埃及和两河流域。这两个文明在数学、天文、医学方面的成就传入并塑造了古典时代的希腊自然哲学,后者正式尝试以自然原因来解释物质世界中的事件。西罗马帝国倾覆后,在中世纪的头几个世纪(约公元400年至1000年)中,有关 古希腊人的世界观念 的知识在西欧渐渐被遗忘,但却在伊斯兰黄金时代的穆斯林世界中得以保存下来。10世纪到13世纪,西欧找回了古希腊的著作并吸收了伊斯兰学者的研究,自然哲学就此复活,并且接下来在始于16世纪的科学革命中转型,其间的新观念和新发现脱离了古希腊观念和传统之窠臼。科学方法迅速在获取知识方面起到更大作用,不过科学的制度化和职业化还是要等到 19世纪 才开始成型。

科学原仅指对自然现象之规律的探索与总结,但人文学科也越来越多地被冠以" 科学”之名。现代科学一般说来可划分为三大分支:形式科学(如逻辑、数学、理论计算机科学),研究抽象概念;自然科学(如生物学、化学、物理学、地理学),在最宽泛的意义上研究自然;以及社会科学(如经济学、心理学、社会学),研究个体与社会。不过,对于形式科学能否确实算作一类科学存在不同意见,因为其并不依赖 经验证据 。而运用既有科学知识以达成实用目的的学科,如工程学和医学,则被归为应用科学。

科学以研究为基础,而研究通常是在 学术 和研究机构、以及政府机构和公司中进行。科学研究的实际影响使得 科学政策 被制订出来,以求施影响于科学界,促使商业产品、武器、医疗卫生以及环境保护获得优先发展。

                                     

1. 含义

科学”不好以简短文字加以准确定义。一般说来,科学涵蓋三方面含義:

  • 觀察:致力於揭示自然真相,而對自然作用由充分的觀察或研究(包括思想實驗),通常指可通過必要的方法進行的,或能通過科學方法 - - 一套用以評價經驗知識的程序而進行的。
  • 假設:通过这样的過程假定组织体系知识的系統性。
  • 檢證:藉此驗證研究目標的信度與效度。

科学包括基础科学与应用科学。基础科学仅以通过试验探究自然原理为目的,其成果一般不容易在短期内得到应用,如物理、化学、生物和地质学;应用科学则兼有探究原理与关注应用这两个方面的动机,如医学、药学、应用光学、气象学、科技考古学和博弈论。按理来说,科学不同于纯技术类学科,后者只涉及运用已有的知识与原理进行发明创造,而只带来技术变革,不在原理层次挖掘出的新规律,如工程学、法医学、农学和林学。应用科学与纯技术有时候很难界定。因科学与技术经常一起被提及,重要的技术发展有时也会被大众视为是科学成就,例如袁隆平曾三次未评上中国科学院院士的一大理由就是杂交水稻在科学界常只被认为是工程学成就,而非科学成就。大众关于爱迪生算不算科学家的争论也与之类似。一些学科是侧重基础研究还是侧重应用研究可能会随时间发展而变动。如天文学的前身占星学是用于占卜的,属于应用类学科(当时还不算是科学);天文学目前是以基础研究为主的科学,但也有发射宇宙卫星等少数可带来实质性服务(如电台广播与手机信号)的技术应用;天文学在实现星际移民与太空资源开发的未来可能又会变成以应用为主的学科。

                                     

2. 语源

據說文解字,科,會意字:" 從禾從斗,斗者量也”;故" 科”學一詞乃取" 測量”之學問之義為名。

从唐朝到近代以前," 科学”作为" 科举之学”的略语,「科学」一词虽在汉语典籍中偶有出现,但古中文中" 科學”一詞所指涉的概念與近代中文" 科學”不同,大多指「科举之学」。 最早使用" 科学”一词之人似可溯及到唐末的罗衮。

科學”一詞由近代日本學界初用于對译英文中的" Science ”及其它歐洲語言中的相應詞匯,歐洲語言中該詞來源於拉丁文" Scientia ”,意為「知識」与「學問」,在近代側重關於自然的學問。

在日本幕府末期到明治時期,「科学」是专门的「个别学问」,有的在以「分科的学问」的意义被使用着。

明治元年,福泽谕吉执笔的日本最初的科学入门书穷理图解出版。同时,明治时代" science”这个语言进入了的时候,启蒙思想家西周使用「科学」作为译词。

甲午海戰以後,中國掀起了學習近代西方科技的高潮,清末主要通過近代化之路上走在前面的日本學習近代科學技術。樊洪业、吴凤鸣等認為,中國最早使用「科學」一詞的學者大概是康有為。他出版的日本書目誌中就列舉了科學入門、科學之原理等書目。辛亥革命時期,中國人使用「科學」一詞的頻率逐漸增多,出現了「科學」與「格致」兩詞並存的局面。在中華民國時期,通過中國科學社的科學傳播活動,「科學」一詞才取代「格致」。

严复首先用" 西学格致”翻译science,后来又借用了science的日语译名" 科学”。而著名思想家、政论家章太炎则明确要求为" 科学”正名。他在1903年8月发表论承用" 维新”二字之荒谬一文,大力批驳责用" 格物”之名翻译" 物理学”(physics)很不适当。

中國社會科學院語言研究所1978年出版的現代漢語詞典则认为科學是:

  • 合乎科學(精神、方法等)的。
  • 反映自然、社會、思維等的客觀規律的分科的知識體系;

不过社会类学科的研究并不容易做到客观分析。一方面是难以控制变量,另一方面是难以给出准确的适用范围和严格的预测结果。

英文中" Science (科學)”一詞的含义有狹义与廣义之分,前者只指自然基礎科學(即數學及自然科學;合稱" 理科”),这與醫學、药学及大地测量学等带有應用目的的探索性学科相区别;后者泛指各种研究自然机理的应用性科学,但又与纯粹研究技术应用、不探究机理的工程学、技术学和计算机信息学相区别。不过目前越来越多的人文学科和计算机学科甚至是文献学也喜欢加上" 科学”的头衔。

                                     

2.1. 语源 中国古代的称呼

中國傳統上將所有的知識統稱" 學問”,古代將關於自然物道理的學問稱為" 物理”。因此古代的物理即是自然科學,數學學科獨立於" 物理”。

                                     

3. 历史

广义上的科学在近世之前就已经存在于历史上众多文明之中。现代科学有其特定的方法,并取得成功的结果,因此在当前,科学这个词的涵义被最严格的限定于现代科学。然而,科学一词的原初涵义为某种类型的知识,而并非用以指代对于这类知识的探求过程的一个专用语。具体说来,它的原意是指人们可以交流及共享的那类知识。例如,在有记录的历史之前很久,人们就已经在积累关于自然事物之运作的知识,而从中逐渐发展出复杂的抽象思维能力。诸如制订复杂的历法,让有毒植物变得可食的技术,以及国家规模的公共工程如扬子江畔洪泛平原上的水库、水坝、河堤等水利设施,还有金字塔这样的建筑物,皆为此种能力的体现。这一类知识,其真确性不随社区的不同而改变;但是,当时并没有将其与另一类与社区相关的知识,诸如神话和法律体系等等,作一致而自觉的区分。金属冶炼在史前即已出现,而已知最早制备出青铜类合金的是温查文明Vinča culture。炼金术据推测是从早期的把物料加热和混合的实验渐渐发展而来。

                                     

3.1. 历史 早期文明

在古代近东的概念图景中并无" 自然”或" 科学”的位置。两河流域的古代居民利用他们所掌握的关于各种天然化学物性质的知识来制造陶器、釉陶faience、玻璃、肥皂、金属、石灰泥lime plaster,以及防水材料;出于占卜的需要,他们亦研究了动物的生理学、解剖学和行为学,并且为了研究占星术而对天体的运行作了大规模的观测。两河流域居民 对医学有强烈兴趣 ,最早的处方即出现在乌尔第三王朝约 2112 BCE – 约 2004 BCE,以苏美尔语写成。不过,这些古代居民看起来对于纯是为了搜集大自然的信息而搜集信息没什么兴趣,而他们所研究的科学门类也主要限于具有明显的实际应用或与他们的宗教体系直接相关的那些。

                                     

3.2. 历史 古典时代

在古典时代的世界中并无真正对应于现代科学家的角色。一些受到过良好教育、通常属于上流阶层、而且几乎全为男性的人,会对自然界进行各式各样的探究,只要他们能抽出时间的话。在前苏格拉底哲学家们发明或发现" 自然”古希腊语 φύσις这个概念之前,人们对于描述一种植物生长的 自然" 方式”时所用的词,与比如说描述一个部落对某个特定的神祇的崇拜" 方式”时所用的词,会不加区分。正因如此,前苏格拉底哲学家被视作第一批严格意义上的哲学家,也是第一批清楚的将" 自然”与" 习俗”区分开的人。自然哲学,即自然科学的前身,也就因此而被定义为有关自然的知识,其真确性放在每一个社区都能成立。而对这样的知识的专门化的寻求则被称为 哲学 ,是为最早的哲学-物理学家的领域。他们多为沉思者或理论家,对天文学特别有兴趣。与之相反,试图用关于自然的知识去模拟自然这称为技巧或技术,希腊语为τέχνη则被古典时代的科学家们视为更适合较低阶层的工匠们的旨趣。

古希腊哲学早期的米利都学派由泰勒斯创立,并有阿那克西曼德和阿那克西美尼等后继者。这个学派首次尝试在解释 自然现象 的时候不诉诸超自然力量。毕达哥拉斯学派创立了一种复杂的数字哲学,并对数学的发展作出重要贡献。古希腊哲学家留基伯和他的学生德谟克利特创立原子论。古希腊医生希波克拉底建立了系统的医药科学的传统,后世尊其为" 医学之父 ”。

早期的哲学式科学历史上的一个转折点是苏格拉底的范例,将哲学应用于研究人文事物,包括人性、政治实体的属性、以及人类知识本身。苏格拉底的诘问法见于柏拉图的对话录,是一种去伪存真的辩证方法:通过扎实的确证及消除那些导致矛盾的假说,便可找到较优的假说。此法为针对智者学派之强调巧言的一种反动。苏格拉底诘问法寻求一般的、被普遍承认的、能形塑信仰的真理,对信仰做严格审视以判断其与别种信仰有无一致性。苏格拉底批评旧有的物理学研究形式,认为其过于偏重纯空想,缺乏自我批判。据苏格拉底自白书所言,他后来被指控腐蚀雅典的青年人,理由是他" 不相信国家所信仰的神,而相信其它新的灵性存在物”。苏格拉底驳斥了这些声言,却仍被判处死刑。

亚里士多德后来创立了一个体系完整的目的论哲学纲领:运动和变化被刻画为事物所内禀的潜能之实现,在这里潜能随事物之类型而定。在他的物理学中,太阳绕着地球转,而许多事物的本性中都包含着为人类服务的目的。每一样东西都有一个形式因,一个目的因,且在一个存在 第一推动者 的宇宙中扮演着自己的角色。苏格拉底学派还强调哲学应考虑有关一个人的最佳生活方式的实际问题(亚里士多德将这门学问划分为伦理学和政治哲学两部分)。亚里士多德主张,当一个人" 拥有一项以某种确定方式达成的信念,而该信念所赖以建立的那些基本原理对他来说也确切的知晓”的时候,就算他科学的知晓了一样事物。

古希腊天文学家阿里斯塔克斯公元前310–前230年首次提出宇宙的日心说模型,将太阳置于中心,行星皆围绕太阳运行。阿里斯塔克斯的模型人们大都不接受,认为其违反了物理学定律。发明家和数学家阿基米德为微积分学之发端作出了主要贡献,因此有时会被视作微积分的发明者,虽然他的原始微积分学缺少若干关键特征。古罗马的老普林尼是一位作家和博学通才,撰写了一部开创性的百科全书自然史,讲述了历史、地理、医药、天文、地学、植物学以及动物学。古典时代的其他科学家或者说原科学家还包括泰奥弗拉斯托斯,欧几里得,希罗菲卢斯,喜帕恰斯,托勒密,以及盖伦。



                                     

3.3. 历史 中世纪

西罗马帝国因蛮族入侵而覆灭,导致欧洲西部的知识界在5世纪时出现了衰退。与此相反,东罗马帝国又称作拜占庭帝国抵挡住了蛮族的进攻,保存且改进了古典时代的学问。6世纪的拜占庭学者 约翰 菲约波诺斯 古希臘語: Ιωάννης ο Φιλόπονος是 第一位 质疑亚里士多德在物理学方面的说教并注意到了其缺陷的学者。约翰 菲约波诺斯对亚里士多德物理学原理的批评成为中世纪学者的灵感来源,并启发了一千年后科学革命时代的伽利略,后者在其著作中举例说明亚里士多德物理学的缺陷时广泛援引了菲约波诺斯。

古典时代晚期及中世纪早期,人们考察自然现象时沿用亚里士多德的方法。亚里士多德的四因说指定了四个" 为什么”,作为对一样事物给出科学的解释时需要回答的问题。在西罗马帝国的衰亡及周期性的政治斗争过程中,一些古代的学问散佚掉了,或是在某些情形下被秘藏。科学(那时称为" 自然哲学”)的一般领域以及古代世界的许多基本知识在早期的拉丁语百科全书编写者如圣依西多禄的著作中还是保存了下来;但亚里士多德的著述原文在西欧终于散佚,而蒂迈欧篇则成了当时唯一广为人知的柏拉图著作,是中世纪早期的拉丁文读者能见到的为数不多的古典自然哲学原著中唯一的柏拉图对话录。另一部在这一时期获得影响力的原著是托勒密的天文学大成,其中包含对太阳系的一个地心说描述。

古典时代晚期,许多希腊语古典文献在拜占庭帝国保存了下来。诸如聂斯脱里派教徒及基督一性论者等团体做了许多叙利亚语翻译工作,并在希腊语古典文献转译至阿拉伯语的过程中发挥作用。于是许多门类的古典学问又在哈里发国家保存下来,其中某些还得到改进。此外,相邻的萨珊帝国建立了 Gundeshapur学院 ,在此希腊的、叙利亚的以及波斯的医师们建立了公元6世纪到7世纪古代世界最重要的医学中心。

伊拉克巴格达在阿拔斯王朝时代建有" 智慧之家”,伊斯兰世界对亚里士多德主义的研修在此兴盛起来。肯迪 (Al-Kindi, 801–873)是第一位穆斯林逍遥学派哲学家,以其在将古希腊及 希腊化时代的哲学 介绍到阿拉伯世界方面的努力而闻名。伊斯兰黄金时代从此时进入繁荣,直到13世纪蒙古西征为止。海什木Ibn al-Haytham, 又称作Alhazen及其前辈 Ibn Sahl 熟习托勒密的光学,并以实验为手段来获取知识。此外,医生和炼金术士如波斯人阿维森纳和拉齐等人还大大发展了医学科学,前者撰有医典,这是一部医学百科全书,一直用到18世纪;后者发现了包括酒精在内的多种化合物。阿维森纳的医典被认为是医学史上最重要的著作之一,而且这两人都对实验医学的实践有重大贡献,以临床试验和实验来支撑他们的主张。

古典时代希腊和罗马的禁忌使得人体解剖在那时通常是不允许的;然而到了中世纪,情况开始改变:博洛尼亚的医学教师和学生开始把人类的尸体也打开来看,而 Mondino de Luzzi 约1275–1326编写了已知第一本基于人体解剖的解剖学教科书。

梦溪笔谈采用百科全书形式,集文数百篇,作者沈括(1031−1095 年)是宋代科学家、政治家、艺术家及博学之士。所涉领域甚为广泛,内容包括天文、物理、数学、地质、地理、生物医学及当时的政经军事、艺文掌故等,还总结了北宋(960−1127 年)时期的许多科技成就,对于研究北宋社会政治、科技、经济诸方面有重要参考价值,是中国科技史非常重要的文献。其中,所记载的毕昇(990−1051 年)发明的泥活字印刷术,是世界上最早的关于活字印刷的可靠史料。

至十一世纪,欧洲大部分地区已皈依基督教;较为强力的君主制政权出现;国界恢复;技术发展与农业方面的革新增加了食物供给和人口。此外,古典希腊文献开始从希腊语和阿拉伯语翻译为拉丁语,而让西欧能有较高水平的科学研讨。

至1088年,欧洲第一所大学(博洛尼亚大学)已成立,起初主要是培养书记人员。对拉丁语翻译的需求增多起来(例如这时出现了托莱多翻译院);西欧人开始收集各种文献,不但收集以拉丁文写成的,还收集从希腊语、阿拉伯语、希伯来语翻译成拉丁文的。海什木光学之书的手抄副本至迟到1240年以前也已经传遍欧洲,这从威特羅Vitello, 或 Witelo的透视一书将其整合在内即可看出。阿维森纳的医典也被译成拉丁语。尤其重要的是,罗马天主教学者开始觅求保存于智慧之家及拜占庭帝国的亚里士多德、托勒密以及欧几里得等人的著作。古典文献的传入引起了12世纪的文艺复兴,以及作为天主教与亚里士多德主义的一种综合体的经院哲学在西欧的兴盛,西欧自此成为科学的一个新的地理中心。在这一时期, 实验 被理解为一个细致的过程,其中包含观察、描述和分类。罗吉尔 培根是这个时代的著名科学家之一。经院哲学强烈专注于启示和辩证推理,在接下来的几百年中渐渐变得不受欢迎;而与此同时,炼金术对于包含了直接观察和一丝不苟的记录的实验之专注正慢慢变得越来越重要。



                                     

3.4. 历史 文艺复兴与近世科学

海什木否证了托勒密的视觉理论,但却没有对亚里士多德的形而上学作任何相应修改。与科学革命同步的一个过程是亚里士多德形而上学中的要素如伦理、目的论以及形式因果论等渐渐失去市场。学者们渐渐意识到宇宙本身很可能既无目的也无伦理需求。从一种注入了目标、伦理以及精神的物理学,发展为这些要素在其中无足轻重的另一种物理学,这个进程历经数个世纪。而天主教会出台的旨在取缔亚里士多德著作的 巴黎大学1277年禁单 则促进了该进程。禁单一出,理论上便有可能讨论真空及真空中的运动,而这直接导致了动力学的出现。

光学上的新发展从两个方面对于开启文艺复兴时代起到一定的作用,一是挑战了被长期信奉的形而上学观念,另一方面是贡献了诸如暗箱和望远镜等技术上的改良和发展。在如今所称的文艺复兴开始以前,罗吉尔 培根、威特羅和 John Peckham 以一个始于感觉和知觉,最后达于对亚里士多德所说的殊相与共相之 统觉 的因果链为基础,各自建构起一种经院式本体论。文艺复兴时期的艺术家们 运用并研究了 一种后来称为透视主义的视觉模型。这种理论只用到亚里士多德四因中的三个:形式因、质料因和目的因。

大明嘉靖三年大统历 (黄历或编算天文年历)) 依据的是元代(1279-1368 年)天文学家郭守敬所创的天文历法系统。 1384 年,明朝钦天监对该历法进行了调整。 该书详细说明了月相,还包括对何时会出现日食和月食进行了预测。 郑和远航中使用了郭守敬的方法来确定经度和纬度。

本草纲目刊印于万历年间,是一部百科全书式的大作,此书作者李时珍(约 1518-1593 年),四川人,是中国历史上最伟大的医学家、药理学家和自然学家之一。1552-1578 年间,李时珍精心研究数百种资源,收集了大量资料。他远涉深山旷野,搜集第一手的草药和民间药方,并查阅了当时的各类医药书籍,最终完成了这部极具科学、 医学和历史意义的巨著。本草纲目一共记载了约 1800 种药材,包含很多前人未知的品种,还附有插图和大约 11000 则处方。

十六世纪,哥白尼阐述了太阳系的日心说模型,与托勒密天文学大成里的地心说模型相异。这项工作的出发点是一条定理,那就是行星离中心天体越远,其轨道周期就该越长,而托勒密的模型与此不符。

开普勒及其他一些人挑战知觉是眼睛唯一功能的观念,将光学研究的中心课题从眼睛转向光的传播。开普勒以一个灌满水的玻璃球来模拟眼球,玻璃球前方开孔,模拟瞳孔。他发现,从景观当中的某一点发出的所有光线都会成像到玻璃球后壁的一个点。光的传播链条终止于眼球后壁的视网膜。不过开普勒最广为人知的工作是发现行星运动三定律,从而改进了哥白尼日心说模型。开普勒并不拒斥亚里士多德的形而上学,而是将自己的工作描述为追寻宇宙和谐。

伽利略 伽利莱创新的运用了实验和数学。他在写作有关哥白尼学说的著作之初曾获教宗乌尔班八世赐福,写完了以后却遭到迫害。伽利略在兩個主要世界體系的對話一书中使用了教宗的论点,不过,是借书中一位傻瓜之口说出。这可是对乌尔班八世的大不敬。

几何原本为古希腊数学家欧几里得(Euclid,约公元前365年-公元前300年)所著。此书最早的中文译本由利玛窦(Matteo Ricci,1552年-1610年)和徐光启(1562年-1633年)合译。他们依据克拉维乌斯(Christopher Clavius,1538年-1612年)校订增补的十五卷拉丁文本, 但只译出前六卷。该译本第一次把欧几里德几何学及其严密的逻辑体系和推理方法引入中国。几何的中文名称,以及几何学中点、线、平行线、三角形和四边形等术语的中文翻译,都是由此译本定名,沿用至今,并传播到日、韩等国。此书为明清时期中国士人研习西学的重要书籍。西洋新法历书此书原名为崇禎历书本书较有系统地介绍歐洲天文学知识,主要讨论历法,以及作为历法基础的天文学理论与计算方法等议题,其中采用丹麥天文学家第谷的宇宙体系,且介绍哥白尼、伽利略与克卜勒等人的天文数据与科学成果。

李之藻(1564年-1630年)協助利玛窦修订坤舆万国全图。除浑盖通宪图说外,另撰述有同文算指、圜容较义、寰有诠、名理探等。

印刷机这一新技术在欧洲北部被广泛用来发表新论述,其中某些与同时代对自然的一般看法大相径庭。勒内 笛卡儿和弗朗西斯 培根发表论述,从哲学上倡导一种新型的非亚里士多德科学。笛卡儿强调个体思考,并主张在研究自然的时候应使用数学而不是几何学。培根强调实验比思辨更重要。培根并进一步质疑亚里士多德的形式因和目的因等概念,而提倡这样的想法,那就是科学应当研究" 简单”的性质比如热的规律,而不是假设林林总总的各类物体中都存在各自特殊的本性,或者说" 形式因”。这种新型科学开始自视为" 自然法”之描述。这种当时最新的自然研究方法论被视作机械唯物论。培根还主张,科学应首先着眼于提供能够改善所有人生活的实用发明。

                                     

3.5. 历史 启蒙时代

作为启蒙时代的先导,艾萨克 牛顿和戈特弗里德 莱布尼茨成功建立了一种如今称为经典力学的新型物理学,这门学问可以被实验验证,可以用数学解释。莱布尼茨亦从亚里士多德物理学借用了一些术语,然而是在新的、非目的论的意义上使用,如" 能量”和" 势能”(亚里士多德的 实现 energeia与 潜能 potentia 之近代版)。这体现出对客体的观念之转变:曾被亚里士多德指出具备特定的、可以实现的内禀目标的客体,如今被认为没有什么内禀目标。以弗朗西斯 培根的方式,莱布尼茨假定,所有不同类型的事物皆遵照相同的自然法则运行,而并不拥有个个不同的形式因或目的因。也正是在这个时期," 科学”这个词被越来越经常的用以指代对某种类型的知识的 某种类型的探求 ,特别是对自然知识的探求,这就与古老的" 自然哲学”这个词的涵义逐渐趋近了。

在这一时期,科学所被宣示的目的转变为产生财富和发明,以从 物质主义 的取向上来改善人类的生活,也就是拥有更多吃的、穿的、以及其它用品。用 培根的话 来说," 科学真正的、合法的目标,是馈赠给人类生活以新的发明和财富”。他不鼓励科学家追求无形的哲学或精神理念,认为这些除了带来" 如一缕轻烟般的或庄严或愉悦的沉思”之外,对人的幸福没什么助益。

在启蒙时代,科学学会及学院支配着科学,在很大程度上取代大学成为科学研究和发展的中心。学会和学院亦是科研职业走向成熟的中枢场所。另一重要发展是科学在不断增加的有文化人口中的普及。 启蒙思想家 们向公众介绍了许多科学理论,其中最知名的是通过百科全书以及伏尔泰和沙特萊侯爵夫人(Émilie du Châtelet,牛顿所著原理的法语译者)对 牛顿主义 的推介。

一些历史学家觉得在科学史上18世纪是一个乏味的时期;然而,18世纪见证了医学实践、数学、物理学的重要进步;生物分类学的创立;对于磁和电的重新理解;以及化学作为一门学科的成熟,为现代化学打下根基。

启蒙时代的哲学家们在将自然及自然法这样的简单概念应用于到那时为止的每一个物理科学及社会科学领域时,选取了较为晚近的科学先驱 - - 主要包括伽利略、波义耳和牛顿 - - 作为这样做法的导师和保证人。如此一来,历史的教训以及架构在其上的社会制度在他们看来便都不足法了。

                                     

3.6. 历史 19世纪

十九世纪是科学史上一个特别重要的时期,在这个时代,当代科学的许多标志性特征开始凸显,如:物理科学与生命科学的改造,精密仪器的频繁使用,诸如" 生物学家”、" 物理学家”、" 科学家”等名词开始浮现;随着" 自然哲学”、" 自然史”等古老的标签渐趋过时,研究自然的人员专业性增强,业余博物学者减少;科学家在社会生活的多个方面取得文化上的权威,许多国家的经济扩张及工业化,科普写作的繁荣,以及科学期刊的出现。

19世纪初,约翰 道尔顿提出了现代原子理論,该理论源自德谟克利特的称为" 原子”的不可分粒子的观念。

約翰 赫歇爾及威廉 惠威爾将方法论系统化:后者第一次使用" 科学家”这个词。

查尔斯 达尔文发表物种起源,使进化论成为生物复杂性的流行解释。他的自然选择理论对物种如何起源给出了一个自然的解释,不过这个理论获得广泛接受还要等到一个世纪之后。

能量守恒、动量守恒和质量守恒这三大定律似乎表明宇宙高度稳定,资源不太会减损。然而,随着蒸汽机的出现和工业革命,人们越来越清楚的认识到物理学所定义的那些能量形式并非同样有用:它们的 能源品质 不同。由这一认识而引出热力学定律的发现,表明宇宙总的能源品质在持续下降:宇宙的熵随着时间的推移而增加。

电磁学亦于19世纪创立,而这一理论又提出了在牛顿力学框架内不易回答的新问题。19世纪的最后十年见证了解构原子的现象的发现:X射线的发现启发了放射性的发现。而翌年便发现了第一种亚原子粒子 - - 电子。

                                     

3.7. 历史 20世纪

爱因斯坦的相对论,以及量子力学的创立,使得经典力学为一种新物理学所取代,其中包含分别用以描述自然界中不同类型事物的两部分理论。

20世纪上半叶,抗细菌药及人造肥料的发展使得全球人口增长成为可能。同一时期,原子结构及原子核被发现,而引至" 原子能”(核能)之释放。此外,20世纪的战争刺激了技术革新,其大规模应用引发了运输(汽车与航空器)革命,以及洲际弹道导弹的研发、太空竞赛、核军备竞赛。

DNA的分子结构于1953年确定。1964年发现宇宙微波背景辐射,这使得稳恒态理论被摒弃,而由乔治 勒梅特(Georges Lemaître)所创立的大爆炸宇宙学成为主流理论。

20世纪下半叶发展起来的航天技术让人们第一次能够在太空其它物体上或其附近作天文观测,其中包括载人登月。通过空间望远镜,人们取得无数天文学及宇宙学发现。

20世纪的最后25年中,集成电路的广泛应用,结合通讯卫星,引发了信息技术革命,以及全球互联网和 移动计算 (包括智能手机)的兴起。出于对漫长而又错综复杂的因果链和巨量数据作大规模系统化处理的需要,诸如系统论以及计算机辅助科学建模等学科开始兴起,而它们又部分的基于亚里士多德的范式。

在这个时期,环境危害问题,如臭氧层空洞、环境的 酸化 (包括土壤酸化、 淡水酸化 及海洋酸化)、水体富营养化以及气候变化等等,开始引起公众关注,环境科学与技术自此发端。

                                     

3.8. 历史 21世纪

人类基因组计划于2003年完成,测定了组成人类DNA的核苷酸碱基对的顺序,并确认了人类基因组中的所有基因,绘制了其图谱。诱导性多能干细胞于2006年取得突破,这项技术能让成年体细胞转化为干细胞,后者可以再转化为人体内任意其它类型的细胞。这对于再生医学有巨大的潜在重要性。

随着希格斯玻色子于2012年被发现,粒子物理标准模型所预言的最后一种基本粒子也找到了。2015年,由广义相对论在一个世纪前所预言的引力波被首次直接观测到。

2015年诺贝尔生理学或医学奖获得者屠呦呦,因其在寄生虫疾病方面的研究获奖。她发现的全新抗疟疾药物青蒿素,世界卫生组织推荐将基于青蒿素的复合疗法作为一线抗疟治疗方案。

2016年8月16日世界首颗量子科学实验卫星" 墨子号”发射圆满成功。

                                     

4. 科学分支

现代科学通常可划分为三大分支,即形式科学、自然科学、社会科学。每一个分支都包括各种专门化而又相互重叠的科学学科,它们常拥有各自的 命名法 及专业技能。自然科学与社会科学皆为经验科学,即它们的知识建立在 经验证据 的基础上,能够由其他研究者在相同条件下检验其有效性。

还有一些密切相关的学科是运用科学知识以达到实用目的,如工程学和医学等,这些学科也被称作应用科学。形式科学、自然科学、社会科学、应用科学等四大領域,其分类关系如下表所示。

                                     

4.1. 科学分支 形式科学

形式科学 是指主要以抽象形态的形式系统为研究对象的科学。它包括数学、系统论、理论计算机科学以及人工智能。形式科学与自然科学、社会科学的共同点是它们都仰赖于对某个知识领域的客观、细致、系统的研究;形式科学与经验科学的不同点则在于前者仅关心基于定义和规则之上的形式性质,手段为演绎推理,而并不关心理论在现实世界的观察中的有效性,无需 经验证据 来证实其抽象概念。所以说形式科学是先验的学科,也因此,关于它们能否真正算作一类科学存在不同意见。但不管怎样,形式科学的方法手段却可以应用于构造和测试用来实践现实观测的科学模型,从而在经验科学中扮演了重要角色。比如,微积分最初就是为了理解物理学中的运动而发明的。自然科学与社会科学中,强烈倚赖数学之应用的分支包括数学物理、 数理化学 、数理生物学、数理金融学、数理经济学等。

                                     

4.2. 科学分支 自然科学

自然科学 致力于通过观察和实验取得 经验证据 ,以此来描述、预测和理解自然现象。它可划分为两个主要分支:物理科学及生命科学(或生物科学)。物理科学又被划分为一些子分支,其中包括物理学、化学、天文学和地球科学。两个主要分支还可进一步划分为更加专门化的学科。现代自然科学的前身是始自古希腊的自然哲学。伽利略、笛卡儿、弗朗西斯 培根和牛顿皆曾讨论过系统性的使用更为数学化且更加倚重实验的研究方法的益处。至今,哲学式的观点perspective、猜想conjecture和前設presupposition在自然科学中仍具必要性,虽然常被忽视。出现于16世纪的旨在对植物、动物和矿物等等进行描述和归类的自然史,在现代为系统性的资料采集所接替,其中包括 基于发现的科学 。当今," 自然史”这个词更多时候意味着向普罗大众所作的观察性描述。

                                     

4.3. 科学分支 社会科学

社会科学 关切的是社会,以及一个社会中的个体之间的关系。它有许多分支学科,包括但不限于人类学、考古学、传播学、经济学、历史学、人文地理、法学、语言学、政治科学、心理学、公共卫生、社会学。社会科学家在研究个体及社会时,所采取的 哲学立场 有可能各不相同。举例来说,实证主义社会科学家使用与自然科学中相似的方法作为理解社会的手段,从而将科学的定义较为严格的限于现代科学。与之相反, 解释主义 社会科学家会更倾向使用社会批判或象征性解释,而非凭实证来构建可证伪理论,于是科学在这里的意义更为宽泛。在当今的学术实践中,研究者往往采取折衷主义而运用多种方法论(比如说将定量研究与定性研究结合来做)。" 社会研究”这个术语亦变得具备一定程度的自治性,其目标和方法对不同学科背景的研究者来说是相似的。

                                     

5.1. 科学研究 测量

科学中常常使用测量来作出对比并减少分歧。即便是有明显的区别,也会通过测量提高精度,以便提高可重复性。例如不同的颜色可以通过光的波长来区分,而不使用" 绿”或" 蓝”等" 模糊”的概念。

测量常使用国际单位制SI,其中包括基本单位:千克, 米, 坎德拉, 秒, 安培, 开尔文和摩尔。

第一个提出专门用于实验的国际基本单位的是查尔斯 桑德斯 皮尔士 1839–1914, 他提出用米来定义谱线的波长。 这直接影响到迈克耳孙-莫雷实验; 迈克耳孙和莫雷参考他的方法并进行了改进。

                                     

5.2. 科学研究 科学的方法

任何研究方法要被視為科學方法,則 必須是客觀的 (科學家們不能對於科學方法下產生的單一結果有不同的解釋且研究時不能故意去改變結果的發生)。另一項基本期待,則是必須有完整的資料文件以供佐證,以及研究方法必須由第三者小心檢視,並且確認該方法能重製(但在量子力学中,制备完全一样的复杂量子态是难以实现的;另外理论地理学也难以进行重复实验,但规律无疑也是确定存在的)。

一般理解,科学是对自然规律的追求。科学定律,有一个重要的标准,就是 不能有反例 。任何一个客观存在的,能够重复的现象,如果于已有的科学定律矛盾,即宣布此科学定律的终结。这也是反证法在理论分析中的应用依据。

科学方法使用可再现的方法解释自然现象。从预测当中提出思想实验或假设。预测是在确认实验或观察前提出的,用于证明其中没有受到干预。而对预测的反证则是进步的证明。科學研究者提出假說來解釋自然現象,然後設計實驗來檢驗這些假說,这种实验需要在可控条件( 控制变量 )下模拟自然现象(在观测科学,如天文学或地质学,可预测的观察结果可以替代核对实验)。整体而言,科学方法可以解决极度创新的问题而又不受主观偏见的影响(又称確認偏誤)。

                                     

5.3. 科学研究 数学的作用

除上述原则外,目前多数科学研究大量依赖于数学方法。在制定实验方案时,会借助优选法(试验设计)知识优化不必要的多余试验,以达到事半功倍的效果。对于单次试验成本较高的研究来说,减少不必要的试验可以极大地节省经费开销。在处理数据时,会应用SPSS、MatLab等软件便捷地分析和处理数据。偏难或偏繁杂的常见计算都可由软件执行。主流的商业软件都会充分考虑用户的难处,所以界面设计大多简洁明了,比较容易上手。而专业一些的软件则需要较多一些的学习时间,如应用广泛的R语言。许多软件都会允许人们开发专门的软件功能扩展包并发布下载,以方便有不同特定需要的研究人群。当研究者提出一个新的计算模型时,就能马上通过编程在现有软件的基础上实现。对于由测量数据而得出的结论,还需要运用数理统计学方法检测结果的显著性。研究人员需要根据不同的样本数量大小(是大样本还是小样本)和数据比较类型(是两组数据比较还是多组间比较等)确定合适的统计模型,然后在软件中输入数据并计算结果的显著性数值。如果显著性标准不达标,则论文一般不会有通过评审的希望。这样的行业现状也有弊端,许多有启示性的失败实验得不到机会发表;很多人会把论文数据的达标当成研究的头等大事,而忽略了自己从事研究工作的初衷。

尽管目前所有理工学科和多数人文学科都不同程度地应用了数学作为论证工具,但数学在各种具体学科中应用时并不能喧宾夺主。一般来说,分析问题需要有所侧重,优先考虑对问题影响重要的因素,能作近似处理的就先作近似,而非对每个因素都用同样严格的数学方法处理,即提倡" 重点论”的思想。在各个细节都努力追求数学严密性而忽略了问题的最主要矛盾是非常错误的做法。如果一个问题的影响因素过多,难以分清主次,则可以尝试利用统计学中主成分分析的方法加以确定。又如利用数学计算分析一个生物学模型时,比起计算结果是否准确或运算技巧是否高明,生物学家会更关心计算的结果是否能明显地体现出某种生物学意义(如哪些自变量对因变量影响最大?是正相关还是负相关?是几次方的关系?是否在到达一定数量后会出现饱和效应?)以及能否顺利通过大量实验数据的验证。

另外,虽然科学理论分不同层次。但基础层面学科中的原理未必可直接适用于复杂层面的学科研究。这也导致了后来系统科学理论的出现。比如物理学是化学的基础,很多化学现象归根结底都可分解为一些量子层面的物理原理。虽然理论物理学家推崇还原论,但也承认量子力学中的微分方程求解方法在一般的化学实际研究中根本派不上用场。化学研究中常遇到的多原子系统在物理学中是属于非常复杂的模型,即使用近似方法计算也是极为繁杂的。所以化学家虽然需要学习和了解基本的物理原理,但会花更多时间掌握仅适用于本学科的特定研究方法。又如变分学和线性泛函分析虽然是现代物理学的重要数学基础,但物理系学生一般不会像数学系学生一样系统地学习这两门课程。又如虽然物理系和电子工程系都会开设专门的复变函数论课程,但一般的实际工作和研究中用到的复数知识并不多,多局限于复数的初等性质、复内积的性质、积分变换和共形变换。



                                     

5.4. 科学研究 科学哲学

近代的科学,旨在理性、客观的前提下,用知识(理论)与实验有力地阐明事物运作的明确规律。由指以培根和马赫等人倡导的实证主义(不过培根低估了数学在科学研究中的重要性),伽利略为实践先驱的实验方法为基础,以获取关于世界的系统知识的研究。主要是以自然现象为对象的自然科学。有些人也将以社会现象为对象的社会科学纳入其中,但社会学科的知识多只局限于人类社会,而且没有精确度很严密的数学公式或易证伪的命题。而艺术,哲学,宗教,文学则完全不属于科学。现代科学,有时还包括以人类思维存在为对象的思维科学。

对于科学的核心特征或者说所谓科学精神,随着人类的进步,有不同的观点,目前一般认为科学具有如下特征:

  • 可否證性:这是来自卡尔 波普尔的观点,人類其實無法知道一門學問裡的理論是否一定正確,但若這門學問有部份有錯誤時,人們可以嚴謹明確的證明這部分的錯誤,的確是錯的,那這門學問就算是合乎科學的學問。
  • 存在一个适用范围:也就是说可以不是放之四海皆准的绝对真理。例如:牛顿力学在微观世界失效。不過科學家們仍然努力尋找與探索是否有某種理論可以囊括所有自然現象(至少在物理界,將相對論與量子力學合併是一至少延續數十年的野心)。
  • 研究过程需严格控制变量。对于相互作用不易分离的多个重要变量,可设法利用统计学方法(如方差分析)对来自不同变量的影响加以分离。
  • 普遍必然性:科学理论来自于实践,也必须回到实践,它必须能够解释其适用范围内的已知的所有事实。如果其适用范围内有任何无法解释的反例存在,那么整个理论就都是错的。
  • 理性客观:从事科学研究不以" 孔子儒家”" 神”、" 鬼”、" 上帝”为前提(一些科学家會信仰宗教,但是" 科学”本身是理性思维的结果),一切以客观事实的觀察为基础,通常科學家會設計實驗並控制各種變因來保證實驗的準確性,以及解釋理論的能力。科学理论不排斥" 神”或" 鬼”存在的可能性,只是反对故意装神弄鬼的不诚实行为,避开缺乏可靠证据的神学空谈。拉普拉斯认为科学是不借助神怪假设而单凭理性解释世界的学问。

科学还可以分为从理论和应用等多个层次。其中理论物理学除遵循上述原则外,还推崇还原论,追求用最简略的假设描述广泛而深刻的原理。苏联物理学家朗道指出" 我们已知的大量物理定律可以由为数不多的最一般规律推演出来。”爱因斯坦也指出任何事情都应该以最简明扼要的方式呈现。而应用科学则与社会发展有直接关系。在与社会进步的相互作用中,应用科学对实践的指导作用得到不断加强,科学体系本身也不断壮大,它对人类历史的重大影响日趋显著。

                                     

5.5. 科学研究 科学文献

在论述非原创观点或引用他人成果时,需要注明资料来源,以方便考证与查阅。现代学术服务机构普遍使用计算机数据库储存与检索文献。

1665年1月,世界上第一个人文类学术期刊学者周刊(Journal des Sçavans)创刊。同年3月,第一个理工类研究杂志自然科学会报创刊。此后,学术类期刊数量逐步增多。1981年时,曾有人估计当时的全球的学术期刊总数已达11500份。仅与生命科学有关的学术杂志,在美国国家医学图书馆中就已列举出5千份。虽涵盖39种语言,但其中九成是英文杂志。

一般人文学科在需要引用文献时,一般需多列几项参考资料。对于理工学科而言,华盛顿邮报文章称," 鉴于中国国内学术抄袭与造假的现象较多,在引用国内文献时,一般也需多列几项参考资料”。少数行业精英有时在发表刊物或专著时,因几乎均为原创内容,即使不写参考资料也能顺利发表,例如费曼等。

目前的学术期刊广泛采用同行评审的方式来履行学术质量把关。但同行评审机制不能完全防止学术造假的发生。在知名杂志发表论文时,同行评审会更加严格。不过同行评审非常严格的科学和自然等杂志也有可能出现论文造假事件,21世纪初比较知名的学术造假案例有韩国科学家黄禹锡造假事件与日本科学家小保方晴子造假事件。

评价学术期刊影响力的常见参考标准之一是看其影响指數IF的大小。影响指数高的期刊会更引人关注。过于强调影响指数的作用则是一种迷信的行为。另外,影响指数评价的是期刊在一段时期内所有论文的 平均 影响力,而有些人误把影响指数当作了判断 特定 论文及其投稿人的水平标准。在知名期刊发表论文的研究者更易获得更多的科研经费。由于知名期刊的关注度更高,所以时间有限的人会优先阅览知名期刊,长此以往,在知名期刊投稿的作者的被引用几率会越来越大,而在不知名期刊投稿的作者的被引用几率会越来越小,造成评价标准越来越不公平的恶性循环。影响指数的提出者尤金 嘎菲德Eugene Garfield也指出同一期刊中不同文章的水平是不一样的,不能一概而论,更不该作为评价个人能力的标准。一种变通的应对方法是在发表论文时先尝试给比自己预期稍好一些的杂志投稿。2005年,物理学家乔治 希尔施Jorge E. Hirsch提出了用于评价物理学家个人研究能力的H指数。

                                     

6. 科学共同体

科学界 ,或称为 科学共同体 ,指所有能够互相交流的科学家,以及他们各自所在的学会及研究所。一般其会被按不同工作的领域分成子社群。其中也有很多跨学科,跨机构的活动。

                                     

6.1. 科学共同体 科学家

科学家是从事科学研究以在某个感兴趣的领域增进知识的个人。" 科学家”scientist这个词系由威廉 惠威尔(William Whewell)于1833年第一次使用。在现代,许多职业科学家会在一所学术机构中接受训练,训练完成后获得一个学位,最高学位为博士,如哲学博士PhD、医学博士MD、工程学博士DEng。许多科学家在各个国民经济部门中继续其职业生涯,如学术界、产业界、行政机构、非营利组织。

科学家显示出对现实的强烈好奇,部分科学家还谋求运用科学知识以增益于健康、国家、环境、实业;从事科学的其它动机还包括取得同侪承认,以及名望。诺贝尔奖即为一种公认名望很高的奖项,每年一次颁授给在医学、物理学、化学、经济学方面取得科学进展的人。

自古至今,就基础科学(不同于应用科学)而言,有一个特点变化不大,即相对宽裕的家境对于专职从事基础科学研究来说是一个显著优势。而应用科学因相对来说较易出成果,且易转化为可创造财富的生产力,故对专职研究者的家境不会有限制。

                                     

6.2. 科学共同体 科学领域中的女性

历史上,科学曾是一个几乎由男人垄断的领域,其间只有少数瞩目的例外。妇女在科学界曾遭到相当的歧视;在男性主导的社会中,这一点与其它领域的情况很相似。比如妇女在寻找工作机会时经常被忽略过去,而她们的工作成果也常被拒绝承认。举例来说, Christine Ladd 1847–1930 为了能够入学博士培养计划曾使用" C. Ladd”的名义;Christine" Kitty” Ladd 1882年即已达到博士要求,却延宕至1926年才被授予学位,在此期间其学术成就已兼及逻辑代数(见真值表)、色彩视觉以及心理学等领域。她的工作领先诸如路德维希 维特根斯坦和 Charles Sanders Peirce 等著名学者。妇女在科学上的成就一向被归功于她们不屈就于家庭圈子中的劳力这一传统上认为其应当扮演的社会角色。

20世纪后期,积极的招募妇女并消除成建制的性别歧视使得女科学家的人数大为增加,但是在某些领域中性别比例依然很不平衡;21世纪初期,过半的新晋生物学家为女性,然而有80%的物理学博士学位授予了男性。在21世纪早期,美国的科学与工程领域有50.3%的学士学位、45.6%的硕士学位及40.7%的博士学位授给了女生。她们拿到了过半的心理学学位(约70%)、社会科学学位(约50%)、以及生物学学位(约50-60%),但在物理科学、地球科学、数学以及计算机科学领域拿到的学位少于半数。生活方式的选择亦为妇女从事科学的主要影响因素之一;有年幼后代的妇女取得终身职位的机会会因工作与生活的平衡问题而下降28%,是故女研究生选择研究职业的意愿会在研究生院就读期间急剧下降,而同期其男性同事的意愿则保持不变。

                                     

6.3. 科学共同体 特殊科学群体

黑人群体由于整体教育水平不高,知名的黑人科学家还很少。

希腊人因面临经济不稳定与人才流失问题,在现代科学发展中光辉不再。

                                     

6.4. 科学共同体 學會

旨在交流和促进科学思想与实验的学会自文艺复兴时代起便已存在。许多科学家都加入了某个旨在助益各自的科学学科、专业或相关学科集群的学会。会员资格可以是向所有人开放的,也可能要求拥有某些科学资格证明,抑或是作为一项通过选举来颁授的荣誉。大多数科学学会为非营利组织,很多为专业协会。其活动一般包括定期召开学术会议以宣读和讨论新的研究结果,以及发行或主办本学科的学术期刊。一些学会亦会行使专业团体的职能,从公共利益或本团体的集体利益出发来管理其成员的活动。科学社会学学者认为学会具有关键的重要性,组建学会有助于新学科或新专业的出现和发展。

科学从19世纪开始职业化,其推动力部分源自一系列国家中权威的 科学院 之创立,如意大利猞猁之眼国家科学院始创于1603年,英国皇家学会1660年,法国科学院1666年,美国国家科学院1863年,德国 威廉皇帝研究所 1911年,以及中国中央研究院1928年。自各国科学院创立以来,国际科学组织如國際科學理事會 ICSU等也开始形成,以促进不同国家的科学共同体之间的合作。

                                     

7.1. 科学与社会 科學與宗教

科学虽然与宗教有过大冲突,但它与宗教和神秘主义并没有严格的对立关系。尤其是近代社会变革以来,一些宗教也发生了适应社会进步的改革,与科学的矛盾趋于缓和。有布道者也开始用可支持自己宗教观点的科学原理举例,虽然解读得很走样。历史有许多著名科学家都有宗教信仰,如欧拉和柯西,宗教信仰并未使他们的科学视野有所局限。而知名物理学家恩里科 费米则是一个不可知论者,他对原子弹的研发和量子物理的发展有重要贡献。费曼认为(在20世纪50年代)有超过半数的科学家无宗教信仰,而且科学不能论证上帝不存在。与科学对立的事物主要是顽固守旧的原教旨主義、排斥理性的反智主义以及违反实证精神与客观原则却以" 科学”自我标榜的伪科学。

                                     

7.2. 科学与社会 科學與哲學

除科学比哲学更脚踏实地关注具体问题外,哲学与科学的区别也在于哲学没有被广泛认可的主流理论。而且哲学有很大一类分支,与科学的客观态度相违背,即唯心主义。哲学虽无数次推动过科学进步,但现在与科学的联系越来越疏远。科学的知识越来越多,越来越细,越来越难,专职的哲学家已很难明白基础科学的前沿问题。相反,科学新概念的快速发展倒是对传统哲学冲击很大,如不可分空间、不可定向流形、蝴蝶效应、量子化假设、平行宇宙、对称性破缺和 单电子宇宙 。由于科学与哲学(尤其是自然哲学)的渊源,科学的最高学位头衔直到今天仍被叫作" Ph.D.”,即" 自然哲学博士”。

费曼称,因科学与怀疑论相容,所以以毫不怀疑的态度以无神论回应所有政治问题和道德问题的共产主义与科学精神相左。其他对社会主义理论之科学性的批评主要来自奥地利与英国哲学家卡尔 波普尔。

                                     

7.3. 科学与社会 科學與古代傳統醫學

一些知识体系或方法论不能纳入现代科学体系,例如中医学。但在中国,中医受到官方扶持,大多数民众也都会在某些时候采用与中医相关的疗法。这与世界其它某些地区的情形类似,如印度的传统医术阿育吠陀也受到官方扶持及民间的普遍相信。目前对中医的主要研究是用对比实验确切地检验中医疗法中有哪些能有效医治病人。2013年,史蒂文 诺维拉Steven Novella和 大卫 科尔库洪 曾撰文指出有关针灸的现有论文出现了一个奇怪的现象,即有些人的实验结果表明针灸有疗效,而另一些人所做的实验则无显著效果。因此两人推测针灸实验可能出现假阳性结果。而对于假阳性结果为何比较多,两人则猜测是安慰剂效应在起作用。